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Abstract 

As an alternative to the empirical Peukert equation, whose validity is restricted to 
intermediate discharge rates, a new equation for the limiting capacity of the lead/acid 
cell is proposed, formally derived from an approximate closed form solution of a two 
finite compartment diffusion problem. The four parameters of the equation are evaluated 
through a non-linear least-squares method. The resulting capacity curve fits the typically 
undulating experimental data closely throughout their range. 

1. Introduction 

The strong influence of discharge rate on the capacity of the lead/acid 
cell has been observed since the early years of the battery industry. Though 
a number of equations relating capacity and discharge time or current have 
been developed, the equations by Peukert [ 1 ] and Liebenow [ 21, both published 
in the year 1897, are still the best known examples. 

The Peukert equation, which relates the discharge current I to the 
discharge time t: 

I”t=K (1) 

can be linearized as 

log t=log K-n log1 

permitting an easy evaluation of the constants n and K. 

(2) 

The Liebenow equation, which relates the capacity C = It to the discharge 
time t: 

c= G&(1 + r/&j (3) 

can also be linearized as 

c=c,,-yI6 (4) 

supplying an even easier way for evaluating the two constant parameters 
c and y. The Liebenow expression, however, is definitely a much less 
p&Zlar equation. 
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Though the Peukert equation is still used in the battery industry, it has 
been recognised in recent years [3-51 that it only fits the experimental data 
reasonably well in the intermediate rates region. When the exponent n lies 
between 1 and 2, as is the rule, the capacity at low discharge rates tends 
to infinity, which is a physical absurdity. A less-stressed point is that at high 
discharge rates it is the quantity I&which tends to infinity: an equally absurd 
behavior. 

The situation of both Peukert and Liebenow equations is clearly illustrated 
by a comparison with typical experimental data for a lead/acid cell extended 
over a wide range of discharge rates in the C versus I6 plot of Pig. 1. 

The experimental data show three distinct regions: 
at low discharge rates the capacity manifestly tends to a constant value 

(C,&. The curve is concave downwards; 
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Fig. 1. Comparison of Peukert and Liebenow equations with typical experimental data of a 
lead/acid cell in a G vs. Zcplot. 
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at intermediate discharge rates the curve is concave upwards; 
at high discharge rates the curve tends to a constant value (Iamax again 

with a downward concavity. 
The Peukert equation operates well in the intermediate region but requires 

different values of n (from n= 1 to n= 2) for each region, whereas the 
Liebenow straight line covers the entire range with a rather crude fit. However, 
both equations fail to match the well marked two-wave profile of the 
experimental curve. 

A comparatively more recent equation, admittedly of empirical origin, 
relating capacity and current and involving a single hyperbolic function, has 
been proposed by Selim and Bro [6] for primary batteries. However, at high 
discharge rates it shows the same behavior as the Peukert equation. The 
same remark can be made for an equation proposed by Kappus and Voss 
[ 71 with the additional objection that the capacity does not vanish at t = 0. 

It is obvious that an alternative equation is needed. In this paper a new 
equation is proposed which, though not having the simple structure of the 
Peukert and Liebenow equations, is more able to reproduce all the peculiarities 
of the real curve. 

The new equation is a closed form (i.e., not containing infinite series 
or definite integrals), approximate solution to the diffusion problem for two 
planar, finite compartments of different lengths, simulating the porous electrode 
and the inter-plate space occupied by electrolyte of different apparent diffusion 
coefficients, Dl and 02. A similar problem was studied by Stein [ 81 for two 
compartments, one of which, however, was semi-infinite. The case of two 
finite compartments has probably never been considered before. 

Though the fact that the reaction is supposed to be concentrated on 
the plate surface is an obvious simplification, the more realistic geometry 
of the model is of decisive importance, as will be apparent, for generating 
the typical, often very deep, inflection shown by the real curve at intermediate 
rates. 

In general terms, if a simple result suitable for direct practical use is 
required, a simplification of the physical model is unavoidable: the problem 
is transferred to the choice of what is convenient to simplify and what is 
not. 

The explicit exact solution, in two forms, of the problem for the general 
case D, #Da will be not given here because it is too cumbersome. Some 
relevant properties only will be demonstrated and used to check the exact 
and approximate solutions for the special case D1 =Dz and the approximate 
solution for the general case. 

2. The two-compartment diffusion problem 

With reference to the double compartment system of cross section S, 
schematically represented in Pig. 2, the problem is to determine the con- 
centration profiles cl(x, t) and cz(z, t) satisfying the two diffusion equations: 
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c,(*,0)=c2(x,0)-c. 

‘ 
L, = kL Lo = (l-k)L 

0 
Ll 

L x 

Fig. 2. Schematic representation of a two partition diffusion problem. 

acl(x, tyat =D, a2cl(x, t)h2 

ac,(x, tyat=o, a2c2(5, t)kd 

with the initial conditions: 

Cl (X, 0) = c&, 0) = co 

the continuity condition: 

c1(L1, t) =G!(&1 t> 

and the bound- conditions: 

ac,(o, t)/k=o; ac,(L,, t)/ax= -4(t)lflw, 

ac,(~,, t)iax=r2(t)hmD2; ac2(L, t)lax=O 

with I,(t) and Iz(t) satisfying the condition: 

I1 (t) +12(t) =I 

where I is the applied constant discharge current. 

(5) 

(6) 

(7) 

(8) 

GO 

(10) 

(11) 

3. The Laplace-Transform of the exact solution 

It is possible to verify that the Laplace-Transform of the exact solution 
to the problem stated in eqns. (Q-(1 1) for x =L1 is given by: 

Yl(LP)=Y2(Ll, PI’ 
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where k = L1 /L and (1 -k) = LJL or, in an alternative form: 

YI(LI, P> =?&1, P> 

co I =--- 
P I 

JXL 

[ 

cash 6 cosh(2v - l)Jh7;; 

?aFsL (dg+fi)p &sinh~ + Jhpsinh~ 1 
sinh(2v - l)& S 

Sil-lh~ 111 
where 

(13) 

dx=L,l~+L2ldz (14) 

(l/a- UYZ) 
-1<2a-l= 

(l/a+ l/Dz) G l 
(15) 

(L,/&-LzAm 
-1<2v-l= 

(L,/l&-L,lm g l 
(16) 

The explicit exact solution cl(L1, t) =c2(LI, t) should be obtained by 
inverting eqns. (12) or (13). This is not a simple matter, save, comparatively, 
for the special case D1 =Dz whose solution wiIl be given later. 

4. Properties of the C_/C, ratio obtainable by investigating the 
L-Transform of the exact solution 

It is known that many properties of a function can be discovered by 
studying its L-Transform [9-l 11. 

Let us first define the following quantities: 

conR3L = cm, = maximum capacity 

and, for cI(L1, t)=cz(L1, t)=O 

I =I, =Iimiting current 
t = transition time 
C =IL t = Iimiting capacity C, 

The inverse of eqn. (12) or eqn. (13) can be indicated in terms of the 
defined quantities as follows: 

c,,/c,= J? -‘If(p)l/t = 2 -‘~p)1/2 -1b3-2> (17) 

By using as j@) the expression between the curly brackets of eqns. 
(12) or (13), it is possible to prove, by taking advantage of the ‘Final Value’ 
Theorem, that: 

Iim c-/c,= 1 (13) 
L-+rn 
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and, by taking advantage of the ‘Initial Value’ Theorem, that: 

i 

ullJG?G for k=l 

lim c,,/c, = 
t-0 

2LIJzgt for k=O (19) 

2L/(~+d%>& for O< k<l 

while, by using as fcp) the expression between the curly brackets of eqn. 
(12) it is possible to detect another interesting property of the exact solution 
in the time domain, namely, that the derivative of C,,/C,_ with regard to 
the ‘geometric partition coefficient’ k, vanishes for 

k=v%/(m+fi) (20) 

i.e., when 

L1 IL, = aJl/& (21) 
the Cmax/CL ratio has an extreme value (a maximum or a minimum). It will 
be shown later that this extreme value is a minimum, namely, C,/C,, has 
a maximum for all discharge rates t. 

5. The exact solution to the special case D1 =D,=D 

For this special case, eqns. (14), (15), and (16) become: 

fi=L/fi; 2ty--l=O; 2v-1=2k-1 

and the L-Transform [ 13 ] becomes: 

YlG, 2)=?4&, P) 

CO I 

[ 

cash mL cash m(2k - l)L 
=_- 

2nEsp~ 6 sinh &aL + J;;sinh&BL 1 (22) 
P 

For cl(L1, t) =c2(L1, t) = 0, the exact solution can be expressed in terms 
of C,,/C,, as a function of the dimensionless time 7=Dt/L2, in two equivalent 
ways corresponding to the two equivalent expressions of the f?, Jacobi function 
[lo], the inverse of the terms between the square brackets of eqn. (22): 

cos2(km) (23) 

whose infinite series is rapidly convergent for large values of T (low discharge 
rates), and 

(24) 
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whose ir&nite series is rapidly convergent for small values of 7 (high discharge 
rates). 

It is possible to verify, by using eqn. (23), that: 

lim c,,/c,= 1 
7-m 

(25) 

and, by using eqn. (24), that: 

lim cm, /CL = _I- 2/G for k=O and k=l 
T-+0 

1 
l/G for O<k<l 

(26) 

Furthermore, by calculating the first and second derivatives of eqn. (23) 
with regard to k, it is possible to verify that for 

k=fi/(d&+6>=1/2 (27) 

namely, for L1 =L2, the ratio C,_/C,, has a maximum for any discharge rate 
7. 

All the formal properties anticipated by studying the L-Transform have 
thus been confirmed for the exact solution to the special case D, =Da =D. 

0.25 
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Fig. 3. C,lC,, vs. L’I,&fC,_D for different values k, and vs. k diierent values 
T according the exact and approximate solutions for special case 
=D2=D. 
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6. Au approximate solution to the special case D1=D2=D 

As an approximate solution to the 
is proposed: 

special case the following expression 

“L - = 2 [tanh(2klG)ftanh(2(I -WAml 
C 

Gm 
max 

It is possible to verify that even for this approximate solution all the 
properties of the exact solution are preserved. As shown in Fig. 3, the 
proposed approximation is acceptable even outside the asymptotic regions. 

7. An approximate solution to the general case D, #D, 

As an approximate solution to the general case D1 #D,, the following 
equation is proposed: 

2 = ~[fitanh($&-)+&mh(2(~)] (29) 

Again, it is possible to verify that even for the proposed approximate solution 
for the general case, all the formal properties anticipated by studying the 
Laplace Transform of the rigorous solution are exactly maintained. 

Equation (29) in the condensed form: 

CL = $[A tanh(Bl6) + C tanh(D/6)] (39) 

or 

I,&=A tanh(Bl6) + C tanh(Dl6) (31) 

where 

A =C,,,,alu, (32) 

B=2kL/a (33) 

c= C,,&&Iu, (34) 

D=2(1-k)L/GF2 (35) 

is proposed as a new equation for the limiting capacity of the lead/acid cell. 
Note that at low discharge rates: 

Iim CL =AB + CD = C,,,, = (It)max 

while at high discharge rates: 

(37) 
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8. Estimation of the parameters of the new equation 

Expression (31) which will be used for determining the four unknown 
parameters A, B, C, and D, is a non-linear equation with regard to B and 
D. 

The parameter estimation can be carried out by minimizing the objective 
function: 

(p(A,B,C,D) = 5 (yi -A tanh Bxi - C tanh Dx# (33) 
i-1 

where N is the number of couples of experimental data xi = l/G and y = 
I& 

The problem can be solved by using a multidimensional non-linear least- 
squares technique as the Levenberg-Marquardt algorithm [ 121 or the so 
called ‘damped Newton’s method’ [ 131. 

Both methods converge very quickly provided that good initial values 
Ao, Bo, Co and Do are used. Good initial values can be obtained by following 
the graphic procedure shown in Fig. 4. In Figs. 5-8 some examples of curve 
fitting to experimental data regarding lead/acid cells of different sizes and 
constructions are shown. The performance data are derived from manufac- 
turers’ catalogues [ 141, technical handbooks [ 4, 15 ], and a monograph [ 161. 

It is necessary to point out that the experimental data must be derived 
from discharges carried out at different constant discharge currents on an 
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Fig. 4. Suggested procedure for evaluating the initial values A,, B,, Co and D, to be used in 
the Marquardt’s or Newton’s parameter estimation techniques for eqn. (31). 
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Fig. 5. Capacity It as a function of &for a 12 V 100 A h SLI battery. Initial values and best 
fitting values of the parameters for eqn. (31) obtained at the 12th iteration of the ‘damped 
Newton’s’ method. are also indicated. 
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Fig. 6. Capacity It as a function of Icfor a 55 A h stationary cell with multitubular positive 
plates. Initial values and best fitting values of the parameters for eqn. (31), obtained at the 
27th iteration of the ‘damped Newton’s’ method, are also indicated. 
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Fig. 7. Capacity It as a function of Z&-at 0 “C and 25 “C of a 12 V 30 A h sealed-type battery. 
Initial values and best fitting values of the parameters used for eqn. (31), obtained at the 
12th iteration, are also indicated. 
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Fig. 8. Capacity It as a function of Z6of a traction-type cell. Initial values and best fitting 
values of the parameters for eqn. (31), obtained at the 10th iteration of the ‘damped Newton’s’ 
method, are also indicated. 
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discharge time 

Fig. 9. Correct and non-correct cut-off voltages used for evaluating the transition times and 
limiting capacity of a lead/acid cell (immobilized electrolyte type). 
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Fig. 10. Consequences on the It vs. ITprofile of a non-correct choice of the cut-off voltage 
at high discharge rates for a sealed, maintenance-free lead/acid cell. 

initially fully-charged cell. The cut-off voltage corresponding to the transition 
times t that are evaluated in order to obtain the limiting capacity CL =ILt 
must be chosen carefully for each discharge curve (see Fig. 9) in the region 
of vertical descent of the voltage curve. An incorrect choice of the cut-off 
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voltage, especially at high discharge rates, results in an It versus I&-plot 
of the type illustrated in Fig. 10. 

9. Possible uses of the new equation 

(a) Obviously, the new equation can be used instead of the Peukert or 
Liebenow equations to describe the limiting capacity of a lead/acid cell when 
a better accuracy is required over a more extended range of discharge rates. 

(b) As has been shown, a physical meaning can be assigned to the 
parameters A, B, C, and D. This allows the possibility of studying the influence 
of the involved quantities on the cell performance. For example, C,,= 
AB+ CD = c,nF’SL is independent of diffusion coefficients and therefore is 
independent of temperature, while I&, =A + C = C,,,,r<m + d&)/U, is 
proportional to the square roots of D1 and D2. In effect, as shown by Fig. 
7, Cnlax is almost independent of temperature whereas 

I&,, 0 &L,, 25 “c = 2 /3 

which is very near to the concentration independent ratio \l%_clJD’s25”c= 
m for sulfuric acid [ 171. 

Another example: the formal property concerning the ‘geometric partition 
coefficient’ k suggests an investigation into the real existence of an optimum 
value of plate distance (pitch) for maximum capacity (see Fig. 11). Such a 
possibility has been predicted by Micka and Rousar on the basis of a theoretical 
model of the lead/acid cell ( 181. 

(c) The battery system as a whole cannot be considered as a linear 
system. However, the concentrations of the reactants obey a linear diffusion 
equation. Therefore the proposed equation can be included in a mathematical 
model where the linearity of the diffusion mechanism is used for predicting 
the concentration polarization response to a step-varying discharge-current 
proille I, until time t,, I2 until time tz, . . . I, until time t,. 

The cell voltage during step n is given by: 

v, = VrJ - (1 lcz) h-l(&) + (a/P> ln(OX,) -RI, (39) 

where V,, cr, /3 and R are constant parameters which can be evaluated as 
shown elsewhere [ 191 and OX, is given in terms of a convolution summation 
[ZO]: 

0x,&=1-2 Ii-Ii-1 

i-1 IL(tn-ti_,) 

where for I,(t), the expression derived from eqn. (31): 

IL(t) = [A imh(Bl6) + C bnh(D/fi)l/h- 

can be profitably used. 

(40) 

(41) 
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Fig. 11. Cr./C”, vs. I&Cm, for different values of k, and C,fC,,,, vs. k for different values 
of t according to the approximate solution for the exemplifying case D, = l/9, Dz = 1, L= 1. 

10. Conclusions 

The proposed new equation contains four parameters which must be 
determined through a much more sophisticated technique than the simple 
log-log plot required by the Peukert equation. 

Notwithstanding this drawback (which can hardly be called so when the 
present availability of effective algorithms and high speed computers is 
considered), the new equation offers the advantage of a better fit over a 
wider range of discharge rates and, possibly, a chance to understand the 
mechanisms better and to improve the performance of the lead/acid cell. 
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